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ABSTRACT

An adaptive generalized predictive control (GPC) system is presented for the management of output
power of solid oxide fuel cells (SOFCs). The dynamics of SOFC output power are characterized by a
fractional order model, which is more accurate than an integer order model to depict the dynamics;
the fractional order dynamic model is taken as the controlled plant of the GPC system. The GPC algo-
rithm adopts a linear approximation method that uses a linear predictive model to approximate locally
and dynamically the nonlinear dynamics of SOFC output power at each sampling period. Moreover, the
parameters of the predictive model are identified online to overcome the time-varying dynamics of SOFC
output power via introducing a forgetting factor recursive least squares (FFRLS) algorithm. Finally, accord-
ing to the future power outputs predicted by the predictive model, an optimal current control sequence
is obtained by solving a multistage cost function. The results demonstrate that the dynamic responses
of the GPC system are quick and smooth, and the change of the current control sequence is slow and
smooth. The quick and smooth dynamics are important for satisfying the rapid load following of SOFC

generating systems and for prolonging the lifetime of SOFC stack.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Solid oxide fuel cells (SOFCs) generate directly electrical energy
out of hydrocarbon fuels with a number of advantages, such as
high electrical efficiency, fuel flexibility, low emissions, and quiet
operation. Therefore, SOFC generating systems are emerging as a
promising alternative in practical application, for domestic, com-
mercial and industrial sectors [1,2].

However, the development of SOFCs is still facing some chal-
lenging problems, such as a longer lifetime and an elevated
performance, towards its large-scale commercialization. In order
to achieve these, an effective control system is required to ensure
the safety and to satisfy the load demand during the operation of
SOFCs [3-7].

The design of the control system of SOFCs is a difficult task,
as a SOFC generating system is a nonlinear and time-varying sys-
tem [2,8,9]. For nonlinear and time-varying systems, nonlinear
model predictive control (NMPC) is a powerful optimized con-
trol approach. In NMPC, a predictive model is used to predict the
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future outputs of controlled plant on the basis of past inputs, out-
puts and future control sequences. The optimal control sequence
is obtained by solving a nonlinear optimization problem. The non-
linear optimization problem is the key for the implementation of
NMPC algorithms [3,10-12].

The application of NMPC algorithms in the field of fuel cells has
been reported in many literatures. Wu et al. [9] developed a NMPC
algorithm based on a radial basis function (RBF) neural network
nonlinear model to control SOFC stack terminal voltage. The non-
linear optimization problem was solved by a golden mean method.
Zhang et al. [3] designed a NMPC method for a SOFC system where
the optimization method was an iterative algorithm with conver-
gence criterion fulfilled. Yang et al. [13,14] built a NMPC algorithm
based on a Takagi-Sugeno (T-S) fuzzy model to online control the
stack temperature of SOFCs. The optimal control sequence was
obtained by a branch-and-bound method that is a kind of iterative
searching algorithm in a discrete search space of tree structure.
Similar NMPC algorithms were also applied to molten carbonate
fuel cells (MCFCs) and proton exchange membrane fuel cells (PEM-
FCs) [15,16]. Golbert and Lewis [17] presented a NMPC method
to satisfy power demands robustly based on a simplified physical
model in a PEMFC system; the nonlinear optimization problem was
also solved by an iterative method.
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Nomenclature

Ca double layer capacitance in triple phase boundary,
Fcm—2

Eo open circuit voltage, V

i current density, Acm~2

1 unit matrix

k index of discrete time

M control horizon

n number of single cells or order of fractional order
capacitance

Ng order of controlled variable

ny order of control variable

N maximum costing horizon

P output power of SOFC stacks, W

Re electrolyte resistance, £ cm?

Rt activation resistance, €2 cm?

s Laplace operator

S available area of single cells, cm?

T matrix transpose

Ts sampling period

Tref response time of exponential function in reference
trajectory

z forward shift operator

z1 back shift operator

Greek letters

o a small enough number
B a large enough number
A control weighting sequence
P forgetting factor
Subscripts

a anode

c cathode

dl double layer

e electrolyte

0 open

r reference trajectory

rat rated

ref reference

t activation

1 associated with anode

2 associated with cathode

As the iterative processes for solving nonlinear optimization
problems are time consuming and expensive, there is still difficulty
in the implementation of the aforementioned NMPC algorithms in
practical application. In order to implement NMPC algorithms in
practical systems, it is important to reduce the computation time.
To avoid the nonlinear optimization problem, Jurado [ 18] adopted a
Hammerstein model for the design of NMPC systems to online con-
trol the output voltage of SOFCs. As the linear dynamic block of the
Hammerstein model is aremaining part of the predictive model, the
optimization can be completed by quadratic programming. Similar
method was also applied to the control of SOFC output voltage [19].
Zhang and Gang [11] used a T-S fuzzy model to represent approx-
imately the nonlinear dynamics of SOFCs. Since the fuzzy model
approximates locally and dynamically the nonlinear dynamics by a
set of linear models at each sampling period, linear model predic-
tive control (MPC) theory can be used easily to design an offset-free
fuzzy MPC for the load following of SOFCs. Vahidi et al. [20] pro-
posed a MPC design for the optimal distribution of current demands
between the power sources in a PEMFC-ultracapacitor system.

The nonlinear plant was linearized around operating points; the
computation burden was alleviated extraordinarily. Li et al. [21]
adopted a least squares support vector machines (LS-SVM) method
to build a nonlinear off-line model of the operating temperature of a
PEMFC stack. During the operation of the PEMFC, the off-line model
was linearized at each sampling period, and a generalized predic-
tive control (GPC) method was used to online control the plant.
Since the explicit solution of the GPC algorithm can be obtained,
its computation burden is greatly alleviated. Therefore, the imple-
mentation of GPC algorithms is feasible, and the GPC algorithm is
also suitable for the control of output power of SOFCs with slight
alterations.

In this research, an adaptive GPC algorithm is presented for the
control of output power of SOFCs. The dynamics of SOFC output
power is greatly complex, for the electrochemical process occurring
at the triple phase boundary (TPB) is a time-varying and nonlinear
process [2,22]. It is difficult to characterize accurately the com-
plex electrochemical process via an integer order capacitance in
the transient equivalent circuit of the inherent impedance of SOFCs.
However, the electrochemical process can be depicted more accu-
rately by a fractional order capacitance or a constant phase element
(CPE) [22-26]. Therefore, a fractional dynamic order model is used
to characterize the dynamics of SOFC output power; it has been per-
formed in our previous study [25]. Moreover, the fractional order
model is modified by adding white Gaussian noise to take into
account the influences from some disturbance factors, such as stack
temperature, inlet flow rates, and inlet pressure.

Taking the fractional order dynamic model as the controlled
plant, we investigate the design of the GPC system. A method of lin-
ear approximation is adopted in the GPC system; the method makes
use of a linear predictive model to approximate locally and dynam-
ically the fractional order dynamic model at each sampling period.
Moreover, the parameters of the predictive model are identified
online by introducing a forgetting factor recursive least squares
(FFRLS) algorithm so that the nonlinear and time-varying dynam-
ics of SOFC output power is predicted accurately. Based on the
predicted power outputs, an optimal current control sequence is
obtained by solving a multistage cost function; the output power
of SOFCs is adjusted according to the optimal current control signal.
The dynamic responses of the GPC system are quick and smooth,
which is useful for satisfying the rapid load following of SOFC gen-
erating systems and for prolonging the lifetime of SOFC stack.

2. Generalized predictive control system of SOFC output
power

The structure of the GPC system of SOFC output power is shown
inFig. 1. The GPC system is aimed at controlling the output power of
the SOFC stack, y(k), by manipulating the current, u(k). The current
control sequence derives from a predictive controller by optimizing
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Fig.1. Structure of an adaptive generalized predictive control system of SOFC output
power.
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acost function. The optimization process is completed in such a way
that the future power output, y(k), is driven close to the reference
trajectory, y-(k). The future power outputs are predicted by means
of a predictive model. The parameters of the predictive model are
estimated online by a parameter observer at each sampling period.
The reference trajectory is computed via a reference trajectory gen-
erator taking into account the power set-point sequence, s(k), and
the output power at current instant k. The components of the GPC
system are presented in detail in the following sections.

2.1. Developing fractional order dynamic model of output power
of SOFC stack

The fractional order dynamic model of output power of SOFC
stack is developed with an assumption that the electrical charac-
teristics are consistent for all single cells in the stack. The fractional
order dynamic model of single cells has been performed in our
previous study [25]. The output voltage of single cells can be rep-
resented in the form of,

u(t) = Eo — uq(t) — uc(t) — Rei(t), (1a)

where u,(t) and u(t) are the overvoltages on the anode and cathode
of single cells respectively,

_ Rial(s)
_ 1 ta
Ha(t) =L [1 + ReaCyaS™ :| (1b)
_ Ricl(s)
| tc
w0 =1 [ | (19

All the variables in Egs. (1a), (1b) and (1c) have the same defi-
nition as ones in Ref. [25].

Therefore, the fractional order dynamic model of output power
of SOFC stack can be obtained by,

P(t) =u(t) xi(t) xS x n, (2)

where S is the available area of single cells, and n is the number of
single cells in stack. Considering Eqs. (1a), (1b), and (1c), Eq. (2) can
be written as:

Reql(s) Recl(s)

P(t)=Sn{ Eo—L71 | 22220 | [~1 {7
( ) n{ ° {1+RmCd1as"1} ]+thCdICS”2

]—Rei(t)} i(e).
(3)

For Eq. (3), the key of numerical evaluation is the calculation of
the overvoltages of anode and cathode, which is described in detail
in Appendix A.

In addition, the fractional order dynamic model, Eq. (3), was
developed in the case of constant work conditions: constant stack
temperature, constant inlet flow rates, and constant inlet pressure.
Practically, the changes of those factors will result in corresponding
changes of the dynamics of SOFC output power [2]. Therefore, tak-
ing into account the influences from those factors, we add white
Gaussian noise to the dynamic model in order to simulate the
electrical characteristics in practical SOFC generating systems. For
instance, white Gaussian noises with signal-to-noise ratio 50 dB are
added to the model parameters (consisting of Req, Cgiq, N1, Ric, Cajcs
13, Re).

2.2. Generalized predictive control

In this section, an adaptive GPC algorithm is designed taking
the fractional order dynamic model developed above as the con-
trolled plant. The GPC algorithm was proposed by Clarke et al. [27].
It makes use of a Controlled Auto-Regressive Integrated Moving
Average (CARIMA) model to predict the system dynamics. The pre-
dictive model is a linear model, which has no promising precision

to predict the future outputs of a nonlinear and time-varying sys-
tem; the precision plays a decisive role in the controller [10]. For
the accurate prediction of the nonlinear and time-varying dynam-
ics, the GPC system presented in the research adopts a method of
linear approximation that makes use of the linear CARIMA model to
approximate locally and dynamically the system at each sampling
period; the parameters of the CARIMA model are identified online
using a FFRLS algorithm, which will be presented in Section 2.3.
The CARIMA model is described by,

c(z7Dw(k)
—Qa
where, u(k) and y(k) are the control and controlled sequences of the

system, w(k) is a zero mean white noise, z~! is a back shift operator,
and A is difference operator,

Az Vy(k) = Bz Vu(k — 1) + (4a)

A=1-z"1. (4b)

A(z™1), B(z™1), and c(z™!) are the following polynomials:

Az VY=14+az '+ +apz", (4c)
B(z7')=bo+b1z ! + -+ bn,z7 ", (4d)
czV=co+cz7 '+ +cpz7. (4e)

For simplicity, the c(z~!) polynomial is chosen to be 1 [10].
In the GPC method, an optimal control sequence is computed by
minimizing a multistage cost function,

N M
J=ES > Ok+i)=ylk+))7 + > _MiXAutk+j-DY 5. (5)
j=1 j=1

where E{.} is the expectation operator, N is the maximum cost-
ing horizon, M is the control horizon, A(j) is a control weighting
sequence, y(k +j) is an optimum ahead prediction of the system
output at (k+j)th instant, y;(k +j) is the future reference trajectory
at (k+j)th instant.

InEq. (5), the increments of the control sequences are taken into
account over the control horizon, and the weight of those incre-
ments can be set commodiously. Therefore, the multistage cost
function is useful for the control of the change of current drawn
from the stack.

In order to optimize the cost function, the optimal prediction,
y(k +j), can be obtained by considering the following Diophantine
equations:

1=E(z DAz ") A +z7F(z ), (6a)
E(z"")B(z™") = Gi(z™") + z7Hj(z ™). (6b)

Here, Ej(z~1), Fj(z™!), Gj(z™!), and Hj(z~!) are the following poly-
nomials:

E(z ") =eo+eiz7 !+ +ej_z7t1, (6¢)
Fz V) =f+flz '+ 4 flz ", (6d)
Gz =g +giz '+ +g_1z7", (6e)
Hz ) =h{+hiz" - 4 h), 27t (6f)

It is simple to obtain the above polynomials by computing the
Diophantine equations recursively [27]._
If Eq. (4a) is multiplied by AEj(Z’l )7, we have

Ei(z DAz ) Ay(k + j)=Ej(z” " )B(z ) Aulk +j-1)+Ej(z” w(k + ).
(7)
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Considering Egs. (6a) and (6b), we can write Eq. (7) in the fol-
lowing,

y(k+j) = Gi(z " )Au(k +j — 1)+ Fi(z~ " )y(k) + Hi(z ") Au(k — 1)
+Ej(z‘1)a)(k +7). (8)

Therefore, y(k + j) is obtained,
y(k +j)=Gj(z*1 YAu(k +j — 1)+Fj(z*1 Wwk) + Hj(z*1 YAu(k —1), (9)

for the reason that w(k+j) is a zero mean white noise.

The selection about the reference trajectory, y/(k+j), is an
important aspect for the dynamics of the GPC system. In order to
obtain a good dynamic performance that the output value can be
driven to the set-point trajectory quickly and smoothly, we choose
the following reference trajectory [28],

yr(k+j) = s(k +j) — (s(k) — y(k)) exp <Tr:;) (10)
where s(k +j) is the set-point trajectory at(k +j)th instant, Ts is the
sampling period, and T,,s defines the speed of response. The refer-
ence trajectory approaches the set-point trajectory exponentially,
which is in favor of the rapidity and stability of the GPC system.

For the convenience of computing the optimal control sequence,
we re-write the cost function, Eq. (5), in a vector form,

J=E{y-y) v-¥)+ u"u}, (11a)
where

y=Iyk+1),....yk+ N, (11b)
Ve =[yr(k+ 1), yr(k+ N, (11¢)
u=[Auk),..., Au(k+M—-1)]", (11d)
A=AL (11e)

Making the gradient of J equal to zero, we can get the optimal
control sequence,

u=(G'G+ 1) "Gy, — Fy(k) - HAu(k — 1)]. (12)

The control signal actually sent to the controlled plant is the first
element of the vector u, which is given by,

uk)=u(k—1)+[1 0 01, 1 (13)

2.3. Online parameter identification of CARIMA model

A FFRLS algorithm is adopted to identify the CARIMA model
online [29]. Let us re-write Eq. (4a),

Az D) Ay(k) = Bz D) Au(k — 1) + w(k). (14)

Considering Egs. (4c) and (4d), we rearrange Eq. (14) as follow-
ing,

Ay(k) = —a; Ay(k — 1) —--- — an, Ay(k — ng) + bo Au(k — 1)
+b1Au(k —2)+ - + bp, Au(k — np — 1) + (k). (15)

Eq. (15) can be written in a vector form as,

Ay(k) = (k) 60 + w(k), (16a)
where ¢(k) is an information vector,
o(k) = [-Ay(k - 1), ..., = Ay(k — nq), Au(k — 1),

x Au(k —2), ..., Au(k —np, — 1)]7, (16b)

Table 1
Parameters of the adaptive generalized predictive control system of SOFC output
power.

Item Value
Open circuit voltage, E, 1.104 (V)
Available area of single cells, S 81 (cm?)
Number of single cells, n 30
Rated power of the SOFC stack, Pyq; 2000 (W)
Control weighting sequence, A 7
Order of controlled variable, n, 6
Order of control variable, n, 6
Sampling period, T 0.01 (s)
Response time of exponential function in reference trajectory, Ty ~ 1.49 (s)
Forgetting factor, p 0.96
and 6 is the parameter vector to be identified,
T
90=[ﬂ],...,ana,bo,bl,...,bnb] . (]GC)

Let 9(k — 1)denote the estimate of 6y at instant (k — 1). Then, the
one-step ahead prediction error at instant k can be defined to be,

e(k) = Ay(k) — (k)T (k — 1). (17)

Finally, the recursive relation of the parameter vector, 6, is
described as following:

P(k — 1)p(k)e(k)

B(k) =0k -1 , 18
O TPk~ 1yt e
T
Pwﬁzl{mk_U_Pw—lw%ww>mk—n}‘ (18b)
P P+ (k)" Pl = D)(k)

where p(0<p<1)is called the forgetting factor. P(k) is a positive
definite covariance matrix. Initial values of 6(k) and P(k) are given
by,

é(—]) = 01, yny 41
a . 18c
{ P(-1)= g%l (189)
Here, « is a small real number, e.g. o =10-15, B should be large
enough, e.g. =109, 1y, 11 is a (ng+ny +1) dimensional vec-
tor whose elements are 1, and [ is an unit matrix of appropriate
dimensions.

3. Results and discussion

The adaptive GPC system of SOFC output power designed above
is implemented in this section. All the parameters of the GPC sys-
tem, excepting the maximum costing and control horizons, are
specified in Table 1.

3.1. Deciding the maximum costing and control horizons

The maximum costing and control horizons (N and M) are dom-
inant model parameters for the performance of the GPC system. An
initial value of M, M =1, gives generally acceptable control behavior
according to the thumb-rules [27]. Therefore, under the condition
of M=1, we can investigate the system performance, such as sta-
bility and rapidity, in the presence of different N. The performance
under different N can be revealed by a step response test of the
system.

The step responses of the GPC system with different N(N=2-6)
are shown in Fig. 2, where the setting power is changed from 486 W
to 1458 W at the instant of 2s. In the light of the step responses,
an important phenomenon can be found that the rapidity of the
system increases with increasing N. But when N becomes too large,
such as N=5 and 6, the dynamic performance of the system will
be unsatisfying for the occurrence of phenomenon of oscillation.
Especially, for the case of N=6, the overshoot and undershoot are
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Fig. 2. Step responses of the adaptive generalized predictive control system of SOFC
output power with different N in the case of M=1.

as high as 17.01% and 34.98%, respectively. For the other three cases
of N=2-4, the system performance are satisfying for the dynamic
process are smooth and stable. Taking into account the rapidity and
stability, the maximum costing horizon is chosen with N=4 in the
GPC system.

Under the condition of N=4, the system performance is also
investigated for different M (M=1-4) as shown in Fig. 3. For all
the cases, the SOFC output power is driven to the setting power
smoothly and quickly; the system rapidity decreases slightly with
the increase of M (Fig. 3(a)). The rapidity is a critical performance
index for a control system, but in some practical plants, such as
a SOFC generating system, the increments of control sequences
should be taken into account carefully.

In the control system of SOFC output power, the control
sequence is the current drawn from the stack. When the current is
drawn from the stack, heat will be generated due to electrochemi-
cal reactions occurring at the TPB and ohmic heat loss deriving from
resistances to the flow of ions and electrons in the electrodes, elec-
trolyte, and interconnects. The change of the current will lead to the
fluctuation of operating temperature in stack; the stack tempera-
ture fluctuation will result in thermal stress, which is destructive for
stack durability [30-33]. Therefore, the current should be changed
smoothly to alleviate the produce of thermal stress in stack. In
Fig. 3(b), the change of current density in the case of M =4, is the
smoothest of all the cases. So, considering the change behavior of

Fig. 3. Step responses of the adaptive generalized predictive control system of SOFC
output power with different M in the case of N=4: (a) dynamics of SOFC output
power, (b) current density increments of the control current.

Table 2
A testing scenario for the adaptive generalized predictive control method consisting
of several power demand set-points within the rated power of the SOFC stack.

Time instant (s) Setting power density (W cm~2) Setting power (W)

1 0.1 243
2 0.2 486
3 0.4 972
4 0.8 1944
5 0.7 1701
6 0.5 1215
7 0.1 243

current control sequences, the control horizon is chosen with M =4
in the GPC system.

3.2. Testing adaptive generalized predictive control system of
SOFC output power

The adaptive GPC system of SOFC output power is tested based
on the model parameters decided above. The power demand set-
points in the GPC system are set from 0.1Wcm~2 to 0.8 Wcm~2,
where the highest value is smaller than the rated power density,
0.835W cm~2.In addition, the changes of the set-points keep a rela-
tion of geometric series during the rise and drop processes of the
power demand set-points; the detailed testing scenario is listed in
Table 2.

On the basis of the power demand set-points in Table 2, the
dynamic responses of the adaptive GPC system of SOFC output
power are shown in Fig. 4. The efficiency of the adaptive GPC
method is illustrated by the fact that the SOFC output power is
driven to the trajectory quickly and smoothly. By analyzing the per-
formance indexes of the dynamic responses, it can be found that the
SOFC output power reaches the power demand set-points without
oscillation, overshoot, and offset, and the rise-time is less than 0.5 s

Fig. 4. Dynamic responses of the adaptive generalized predictive control system of
SOFC output power.

Fig. 5. Control current computed by the adaptive generalized predictive control
algorithm.
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Fig. 6. Current density increments of the control current.

at all step change set-points. Therefore, the adaptive GPC method
is capable for the control of the SOFC output power.

Furthermore, Fig. 5 demonstrates that the current control
sequence for the above dynamic responses changes smoothly. For
instance, the maximum value of current density increments is less
than 0.07 Acm~2 (Fig. 6). The smooth current control sequence is
very effective to alleviate thermal stress in stack. Therefore, the
adaptive GPC method considering the change behavior of the cur-
rent is valuable for maximizing stack durability.

4. Conclusions

An adaptive generalized predictive control system is designed
for the management of SOFC output power in this research. The
dynamic responses of the control system are quick and smooth,
whichis a solid foundation for the load following of SOFC generating
systems. Moreover, the smooth current control sequence supports
the usefulness of the control system to maintain the thermal stress
in stack within a safe operating range. In future work, it is valuable
to study the synchronous management of the electrical and heat
energy of SOFC generating systems.
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Appendix A. Appendix A. Calculation of electrode
overvoltages

Step 1: The transfer function of the electrode

The transfer function of an electrode (anode or cathode) can be
expressed in the light of Egs. (2b) and (2¢),
Ux(s) Re

I(s) ~ 1+RCys™ (A1)

where Uyx(s) denotes the Laplace transform of the overvoltage of the
electrode u,(t). Eq. (A.1) can be re-written,

Ux(s) a
I(s) ~ s"+b’

with a=1/Cy, b=1/(R:Cq)).

(A.2)

Step 2: The fractional differential equation of the electrode

Eq. (A.2) can also be written in the following:
s"Ux(s) + bUx(s) = al(s). (A3)

The inverse Laplace transform applied to Eq. (A.3), the following
fractional differential equation is obtained [34,35]:

oD ux(t) + buk(t) = ai(t). (A.4)
Step 3: Discretization of the fractional differential equation

According to the Griinwald-Letnicov (GL) definition [34], the
discretization formula of fractional derivatives is defined to be,

k
oDfux(t) = h™"y " afuy(k —J), (A5)
j=0

where h is step size, which is equal to the sampling period in the
GPC system; a)]" is the weight coefficient, which is calculated by the

following recurrence equation,

wg =1
0 n+1\ , . . (A6)
a)jf(l— i ol s j=1,2,3,...
Eq. (A.5) can then be re-written in the form:
k
oDy () = h™u(k) + h’”Zanux(k - ). (A7)

j=1
Finally, the discretization fractional differential equation is
obtained,

k
h (k) + h*"Zw]qu(k — ) + bux(k) = ai(k). (A8)
j=1

The electrode overvoltage ux(k) then is computed as following:
. ek :
ai(k)—h™" jzlw}lux(k —7)

h-"+b (A-9)

ux(k) =
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